PSMN008-75P

N-channel TrenchMOS SiliconMAX standard level FET

Rev. 04 — 10 December 2009

Product data sheet

1. Product profile

1.1 General description

SiliconMAX standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Higher operating power due to low thermal resistance
- Low conduction losses due to low on-state resistance
- Rated for avalanche ruggedness
- Suitable for high frequency applications due to fast switching characteristics

1.3 Applications

■ DC-to-DC convertors

Uninterruptible power supplies

1.4 Quick reference data

Table 1. Quick reference

Parameter	Conditions	Min	Тур	Max	Unit
drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	-	75	V
drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see <u>Figure 1</u> and <u>3</u>	-	-	75	Α
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	230	W
characteristics					
gate-drain charge	$V_{GS} = 10 \text{ V}; I_D = 75 \text{ A};$ $V_{DS} = 60 \text{ V}; T_j = 25 \text{ °C};$ see Figure 11	-	50	-	nC
aracteristics					
drain-source on-state resistance	$V_{GS} = 10 \text{ V; } I_D = 25 \text{ A;}$ $T_j = 25 \text{ °C; see } \frac{\text{Figure 9}}{\text{Model}} \text{ and } \frac{10}{\text{Model}}$	-	6.5	8.5	mΩ
	drain current total power dissipation characteristics gate-drain charge aracteristics drain-source	drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ $\text{see } \underline{\text{Figure 1}} \text{ and } \underline{3}$ total power dissipation characteristics $\text{gate-drain charge} \qquad V_{GS} = 10 \text{ V}; I_D = 75 \text{ A};$ $V_{DS} = 60 \text{ V}; T_j = 25 \text{ °C};$ $\text{see } \underline{\text{Figure 11}}$ aracteristics $\text{drain-source} \qquad V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V}; \qquad - \qquad - \qquad 75$ $\text{see } \underline{\text{Figure 1}} \text{ and } \underline{3}$ $\text{total power dissipation}$ $T_{mb} = 25 ^{\circ}\text{C}; \text{see } \underline{\text{Figure 2}} \qquad - \qquad - \qquad 230$ characteristics $\text{gate-drain charge} \qquad V_{GS} = 10 \text{V}; I_D = 75 \text{A}; \qquad - \qquad 50 - \qquad V_{DS} = 60 \text{V}; T_j = 25 ^{\circ}\text{C}; \text{see } \underline{\text{Figure 11}}$ aracteristics $\text{drain-source} \qquad V_{GS} = 10 \text{V}; I_D = 25 \text{A}; \qquad - \qquad 6.5 8.5$

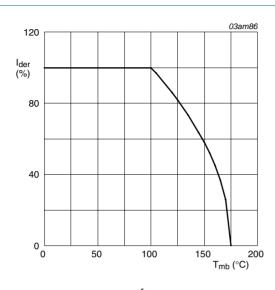
2. Pinning information

Table 2. Pinning information

	· ·			
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain	mb	D
3	S	source		$G \longrightarrow X$
mb	D	mounting base; connected to drain	1 2 3	mbb076 S
			SOT78 (TO-220AB)	

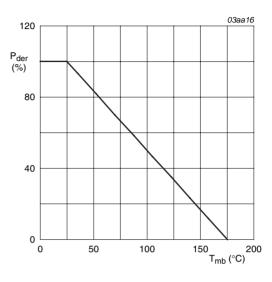
3. Ordering information

Table 3. Ordering information


Type number	Package		
	Name	Description	Version
PSMN008-75P	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78

4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	75	V
V_{DGR}	drain-gate voltage	$T_j \le 175 \text{ °C}; T_j \ge 25 \text{ °C}; R_{GS} = 20 \Omega$	-	75	V
V_{GS}	gate-source voltage		-20	20	V
I _D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 100 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	-	75	Α
		$V_{GS} = 10 \text{ V; } T_{mb} = 25 \text{ °C; see } \frac{\text{Figure 1}}{\text{And 3}}$	-	75	Α
I_{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 1 and 3	-	240	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	230	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
Is	source current	$T_{mb} = 25 ^{\circ}C$	-	75	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	240	Α
Avalanche	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 63 A; $V_{sup} \le$ 15 V; unclamped; R_{GS} = 50 Ω ; t_p = 0.129 ms	-	395	mJ

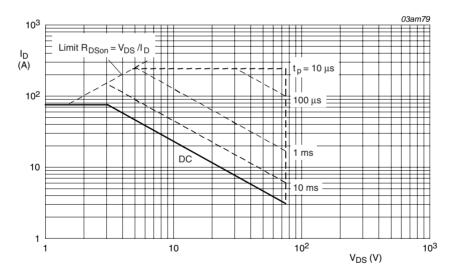

 $I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100\%$

Fig 1. Normalized continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

 $T_{mb} = 25$ °C; I_{DM} is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	0.65	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	vertical in still air	-	60	-	K/W

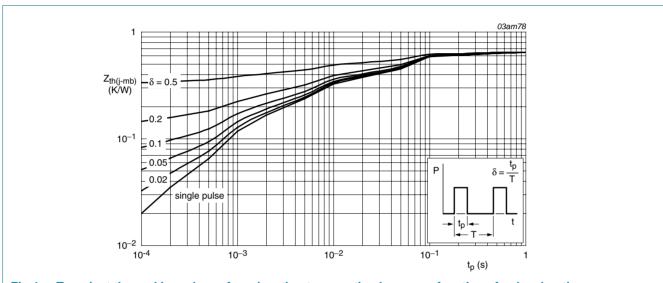


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

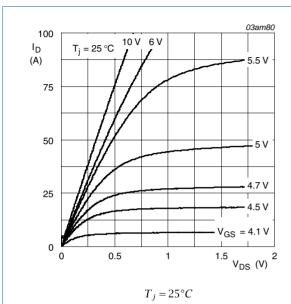
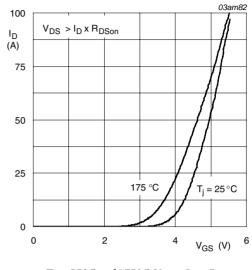
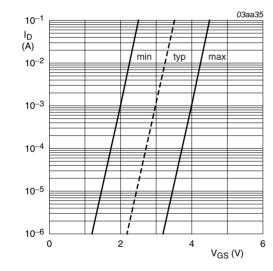
5 of 12

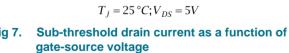
Characteristics

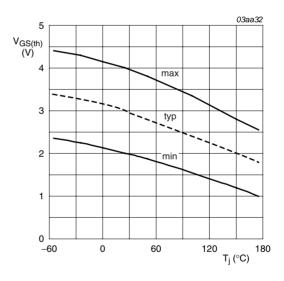
Table 6. Characteristics

Product data sheet

Table 0.	Onaracteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	75	90	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = -55 \text{ °C}$; see Figure 8	-	-	4.4	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 175 °C; see <u>Figure 8</u>	1	-	-	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = 25 °C; see <u>Figure 8</u>	2	3	4	V
I _{DSS}	drain leakage current	$\begin{split} I_D &= 250 \ \mu \text{A}; \ V_{GS} = 0 \ \text{V}; \ T_j = 25 \ ^{\circ}\text{C} \\ \end{split} \begin{tabular}{l} I_D &= 1 \ \text{mA}; \ V_{DS} &= V_{GS}; \ T_j = -55 \ ^{\circ}\text{C}; \\ \text{see Figure 8} \\ \end{split} \begin{tabular}{l} I_D &= 1 \ \text{mA}; \ V_{DS} &= V_{GS}; \ T_j = 175 \ ^{\circ}\text{C}; \\ \text{see Figure 8} \\ \end{split} \begin{tabular}{l} I_D &= 1 \ \text{mA}; \ V_{DS} &= V_{GS}; \ T_j = 25 \ ^{\circ}\text{C}; \\ \text{see Figure 8} \\ \end{split} \begin{tabular}{l} V_{DS} &= 1 \ \text{mA}; \ V_{DS} &= 0 \ \text{V}; \ T_j = 25 \ ^{\circ}\text{C}; \\ \text{see Figure 8} \\ \end{split} \begin{tabular}{l} V_{DS} &= 75 \ \text{V}; \ V_{GS} &= 0 \ \text{V}; \ T_j &= 25 \ ^{\circ}\text{C} \\ \end{split} \begin{tabular}{l} V_{DS} &= 75 \ \text{V}; \ V_{GS} &= 0 \ \text{V}; \ T_j &= 25 \ ^{\circ}\text{C} \\ \end{split} \begin{tabular}{l} V_{GS} &= 20 \ \text{V}; \ V_{DS} &= 0 \ \text{V}; \ T_j &= 25 \ ^{\circ}\text{C} \\ \end{split} \begin{tabular}{l} V_{GS} &= 20 \ \text{V}; \ V_{DS} &= 0 \ \text{V}; \ T_j &= 25 \ ^{\circ}\text{C} \\ \end{split} \begin{tabular}{l} V_{GS} &= 10 \ \text{V}; \ I_D &= 25 \ \text{A}; \ T_j &= 175 \ ^{\circ}\text{C}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \ I_D &= 25 \ \text{A}; \ T_j &= 25 \ ^{\circ}\text{C}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \ I_D &= 25 \ \text{A}; \ T_j &= 25 \ ^{\circ}\text{C}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \ I_D &= 25 \ \text{A}; \ T_j &= 25 \ ^{\circ}\text{C}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \ S_{CS} &= 10 \ \text{V}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \ S_{CS} &= 10 \ \text{V}; \\ \end{split} \begin{tabular}{l} S_{CS} &= 10 \ \text{V}; \\ S_{CS}$	10	μA		
		$V_{DS} = 75 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	= 0 V; T_j = 175 °C		500	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	4	0.05 10 μA - 500 μA 4 100 nA - 20 mΩ 6.5 8.5 mΩ 122.8 - nC 21 - nC	nΑ
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	4	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 ^{\circ}\text{C};$ see Figure 9 and 10	-	-	20	mΩ
		$V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C;}$ see Figure 9 and 10		6.5	8.5	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 75 \text{ A}; V_{DS} = 60 \text{ V}; V_{GS} = 10 \text{ V};$	-	122.8	-	nC
Q _{GS}	gate-source charge	T _j = 25 °C; see <u>Figure 11</u>	-	21	-	nC
Q_{GD}	gate-drain charge		-	50	-	nC
C _{iss}	input capacitance	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$	-	5260	-	pF
Coss	output capacitance	T _j = 25 °C; see <u>Figure 12</u>	-	525	-	рF
C _{rss}	reverse transfer capacitance		-	420	-	pF
t	capacitatice					
ا d(on)	turn-on delay time	$V_{DS} = 38 \text{ V}; R_L = 1.5 \Omega; V_{GS} = 10 \text{ V};$	-	18	-	ns
		$V_{DS} = 38 \text{ V}; R_L = 1.5 \Omega; V_{GS} = 10 \text{ V};$ $R_{G(ext)} = 10 \Omega; T_j = 25 \text{ °C}$	-		-	ns ns
t _r	turn-on delay time		- - -	55		
t _r	turn-on delay time rise time		- - -	55 88	-	ns
t _r t _{d(off)} t _f	turn-on delay time rise time turn-off delay time		- - - -	55 88	-	ns ns
t _r t _{d(off)} t _f Source-d	turn-on delay time rise time turn-off delay time fall time	$R_{G(ext)} = 10 \Omega$; $T_j = 25 ^{\circ}C$ $I_S = 25 A$; $V_{GS} = 0 V$; $T_j = 25 ^{\circ}C$;	- - - -	55 88 80	-	ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Source-d t_{rr}	turn-on delay time rise time turn-off delay time fall time rain diode	$R_{G(ext)} = 10 \Omega$; $T_j = 25 ^{\circ}C$ $I_S = 25 A$; $V_{GS} = 0 V$; $T_j = 25 ^{\circ}C$;	- - - -	55 88 80	-	ns ns ns


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values



 $T_j = 25$ °C and 175°C; $V_{DS} > I_D \times R_{DSon}$

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $I_D = 1 \, mA; V_{DS} = V_{GS}$

Fig 8. Gate-source threshold voltage as a function of junction temperature

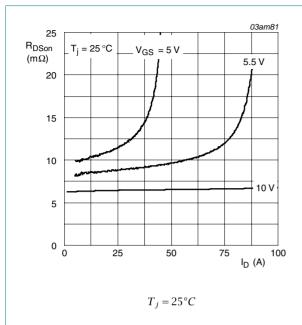


Fig 9. Drain-source on-state resistance as a function of drain current; typical values

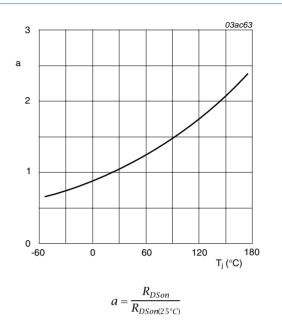


Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

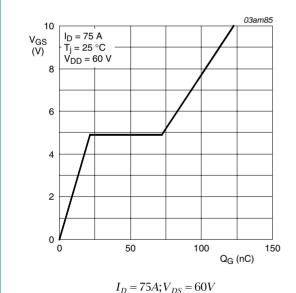


Fig 11. Gate-source voltage as a function of gate charge; typical values

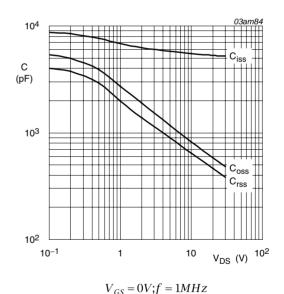


Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

7 of 12

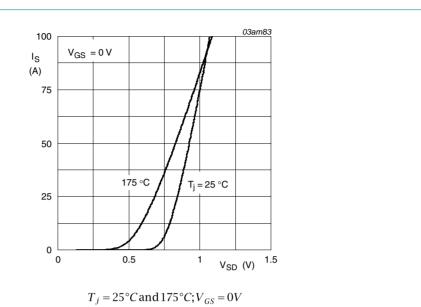
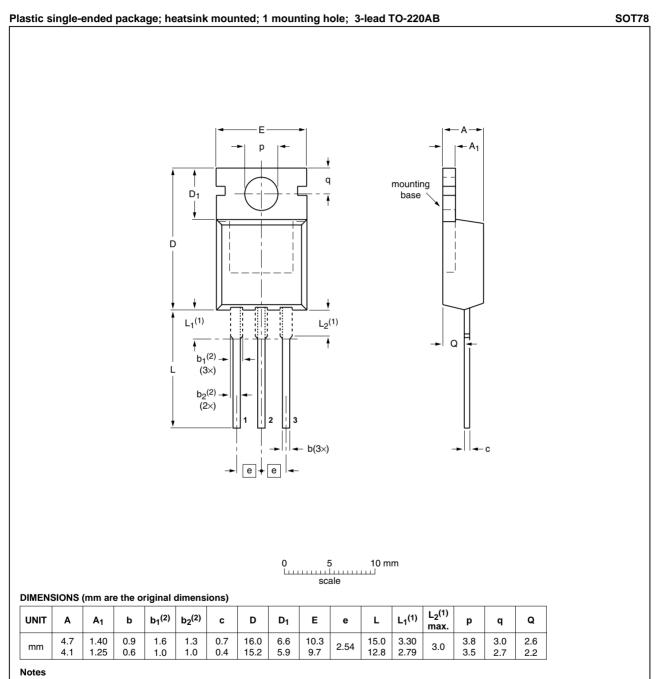



Fig 13. Source current as a function of source-drain voltage; typical values

7. Package outline

- 1. Lead shoulder designs may vary.
- 2. Dimension includes excess dambar.

0	OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
\	/ERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
	SOT78		3-lead TO-220AB	SC-46		08-04-23 08-06-13

Fig 14. Package outline SOT78 (TO-220AB)

PSMN008-75P_4

Revision history

Table 7. **Revision history**

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN008-75P_4	20091210	Product data sheet	-	PSMN008_75P_75B-03
Modifications:		of this data sheet has been of NXP Semiconductors.	n redesigned to comply w	rith the new identity
	 Legal texts 	have been adapted to the	new company name whe	re appropriate.
	 Type numb 	er PSMN008-75P separate	ed from data sheet PSMN	l008_75P_75B-03.
PSMN008_75P_75B-03 (9397 750 12545)	20040108	Product data	-	PSMN008_75P_75B-02
PSMN008_75P_75B-02 (9397 750 11416)	20030711	Product data	-	PSMN008_75P_75B-01
PSMN008_75P_75B-01 (9397 750 07495)	20000918	Product data	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URLhttp://www.nxp.com.

9.2 Definitions

Draft— The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General— Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes— NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use— NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications— Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values— Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale— NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published athttp://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS— is a trademark of NXP B.V.

10. Contact information

For more information, please visit:http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PSMN008-75P 4 © NXP B.V. 2009. All rights reserved.

PSMN008-75P

N-channel TrenchMOS SiliconMAX standard level FET

11. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	1
1.3	Applications	1
1.4	Quick reference data	1
2	Pinning information	2
3	Ordering information	2
4	Limiting values	
5	Thermal characteristics	
6	Characteristics	5
7	Package outline	9
8	Revision history	
9	Legal information	
9.1	Data sheet status	. 11
9.2	Definitions	
9.3	Disclaimers	
9.4	Trademarks	
10	Contact information	11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

